ar X iv : 0 80 4 . 09 95 v 3 [ m at h . C O ] 3 J un 2 00 9 COMBINATORIAL HOPF ALGEBRAS , NONCOMMUTATIVE HALL - LITTLEWOOD FUNCTIONS , AND PERMUTATION TABLEAUX

نویسندگان

  • LAUREN K. WILLIAMS
  • L. K. WILLIAMS
چکیده

We introduce a new family of noncommutative analogues of the HallLittlewood symmetric functions. Our construction relies upon Tevlin’s bases and simple q-deformations of the classical combinatorial Hopf algebras. We connect our new Hall-Littlewood functions to permutation tableaux, and also give an exact formula for the q-enumeration of permutation tableaux of a fixed shape. This gives an explicit formula for: the steady state probability of each state in the partially asymmetric exclusion process (PASEP); the polynomial enumerating permutations with a fixed set of weak excedances according to crossings; the polynomial enumerating permutations with a fixed set of descent bottoms according to occurrences of the generalized pattern 2− 31.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A pr 2 00 8 COMBINATORIAL HOPF ALGEBRAS , NONCOMMUTATIVE HALL - LITTLEWOOD FUNCTIONS , AND PERMUTATION TABLEAUX

We introduce a new family of noncommutative analogs of the HallLittlewood symmetric functions. Our construction relies upon Tevlin’s bases and simple q-deformations of the classical combinatorial Hopf algebras. We connect our new Hall-Littlewood functions to permutation tableaux, and also give an exact formula for the q-enumeration of permutation tableaux of a fixed shape. This gives an explici...

متن کامل

J ul 2 00 8 COMBINATORIAL HOPF ALGEBRAS , NONCOMMUTATIVE HALL - LITTLEWOOD FUNCTIONS , AND PERMUTATION TABLEAUX

We introduce a new family of noncommutative analogues of the HallLittlewood symmetric functions. Our construction relies upon Tevlin’s bases and simple q-deformations of the classical combinatorial Hopf algebras. We connect our new Hall-Littlewood functions to permutation tableaux, and also give an exact formula for the q-enumeration of permutation tableaux of a fixed shape. This gives an expli...

متن کامل

Combinatorial Hopf Algebras, Noncommutative Hall-littlewood Functions, and Permutation Tableaux

We introduce a new family of noncommutative analogs of the HallLittlewood symmetric functions. Our construction relies upon Tevlin’s bases and simple q-deformations of the classical combinatorial Hopf algebras. We connect our new Hall-Littlewood functions to permutation tableaux, and also give an exact formula for the q-enumeration of permutation tableaux of a fixed shape. This gives an explici...

متن کامل

ar X iv : 1 41 1 . 19 39 v 1 [ m at h . O A ] 7 N ov 2 01 4 ON THE STRUCTURE OF QUANTUM AUTOMORPHISM GROUPS

We compute the K-theory of quantum automorphism groups of finite dimensional C-algebras in the sense of Wang. The results show in particular that the C-algebras of functions on the quantum permutation groups S + n are pairwise non-isomorphic for different values of n. Along the way we discuss some general facts regarding torsion in discrete quantum groups. In fact, the duals of quantum automorp...

متن کامل

m at h . C O / 0 20 52 06 v 1 1 9 M ay 2 00 2 132 - avoiding Two - stack Sortable Permutations , Fibonacci Numbers , and Pell Numbers ∗

In [W2] West conjectured that there are 2(3n)!/((n+1)!(2n+1)!) two-stack sortable permutations on n letters. This conjecture was proved analytically by Zeilberger in [Z]. Later, Dulucq, Gire, and Guibert [DGG] gave a combinatorial proof of this conjecture. In the present paper we study generating functions for the number of two-stack sortable permutations on n letters avoiding (or containing ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009